

Major Symptoms at Diagnosis

- Bone pain: 58%
- Fatigue: 32%
- Weight loss: 24%
- Paresthesias: 5%
- 11% are asymptomatic or have only mild symptoms at diagnosis

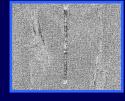
Kyle RA, et al. Mayo Clin Proc. 2003;78:21-33.

Clinical Manifestations

Hyper<u>C</u>alcemia

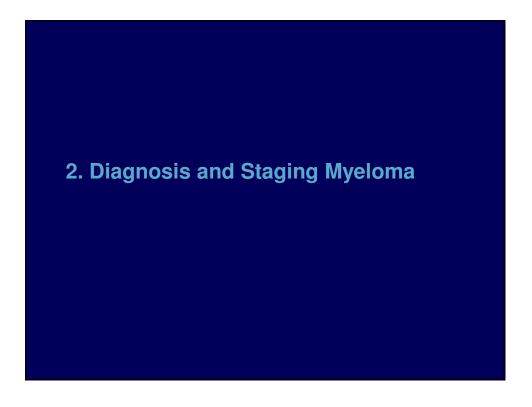
Renal dysfunction

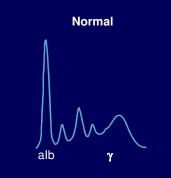
<u>A</u>nemia


Bone lesions

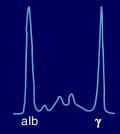
Increased Infections

Clinical Presentation


- Monoclonal (M) serum protein (93%)
- Lytic bone lesions (67%)
- Increased plasma cells in the bone marrow (96%)
- Anemia (normochromic normocytic; 73%)
- Hypercalcemia (corrected calcium ≥ 11) (13%)
- Renal failure, serum creatinine \geq 2.0 (19%)
- Infection



Kyle RA, et al. Mayo Clin Proc. 2003;78:21-33.



Serum Protein Electrophoresis

Gamma region: Small broad peak

Monoclonal Protein in Myeloma

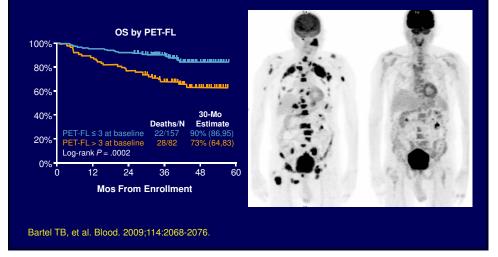
Gamma region: Sharp peak

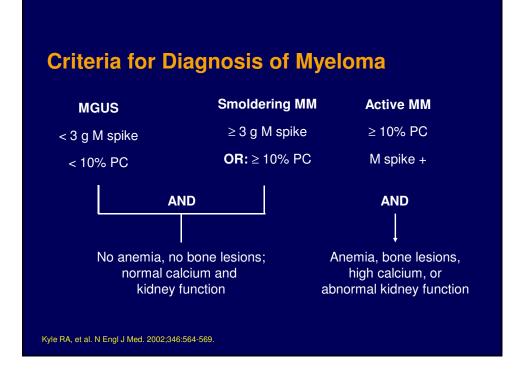
Kyle RA, et al. Cecil textbook of medicine, 22nd edition. Elsevier; 2004. Image courtesy Steven Fruitsmaak. Available at: http://commons.wikimedia.org/wiki/File:Monoclonal_gammopathy_Multiple_Myeloma.png.

Distribution of Monoclonal Proteins in Multiple Myeloma

- M protein found in serum or urine or both at time of diagnosis in 97% of patients (3% are nonsecretory)
 - Serum M spike by protein electrophoresis: 80%
 - Abnormal serum immunofixation: 93%
 - Abnormal urine immunofixation: 75%
 - Abnormal urine or serum immunofixation: 97%
- Of the 3% with nonsecretory myeloma with negative serum and urine immunofixation, 60% will have detectable serum free light chains on the serum free light chain assay

Kyle RA ,et al. Mayo Clin Proc. 2003;78:21-33. IMWG. Br J Haematol. 2003;121:749-757. Jacobson JI, et al. Br J Haematol. 2003;122:441-450.


Initial Diagnostic Evaluation


- History and physical examination
 Urine
- Blood workup
 - CBC with differential and platelet counts
 - BUN, creatinine
 - Electrolytes, calcium, albumin, LDH
 - Serum quantitative immunoglobulins
 - Serum protein electrophoresis and immunofixation
 - β_2 -microglobulin
 - Serum free light chain assay

NCCN. Practice guidelines: myeloma. V.3.2010. Available at: http://www.nccn.org.

- - 24-hr protein
 - Protein electrophoresis
 - Immunofixation electrophoresis
- Other
 - Skeletal survey
 - Unilateral bone marrow aspirate and biopsy evaluation with immunohistochemistry or flow cytometry, cytogenetics, and FISH
 - MRI as indicated

OS According to the Presence of PET-Identified Focal Lesions at Baseline

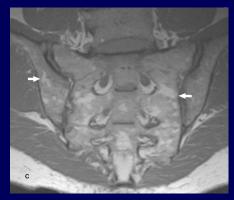
International Staging System for Symptomatic Myeloma

Stage	Criteria
Stage 1	β_2 -M < 3.5 and ALB \ge 3.5
Stage 2	Not stage 1 or 3
Stage 3	ß₂-M ≥ 5.5

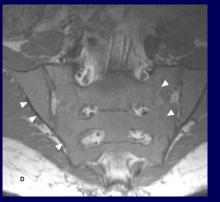
Greipp PR, et al. J Clin Oncol. 2005;23:3412-3420.

Magnetic Resonance Imaging of MM

Bone marrow-MRI stage A with no evidence of bone marrow infiltration


Ailawadhi S, et al. Cancer. 2010;116:84-92.

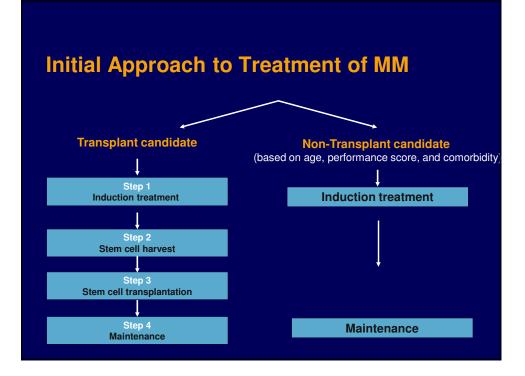
Bone marrow-MRI stage B with some (< 10%) marrow infiltration


Magnetic Resonance Imaging of MM

Bone marrow-MRI stage C with moderate 10% to 50% marrow infiltration

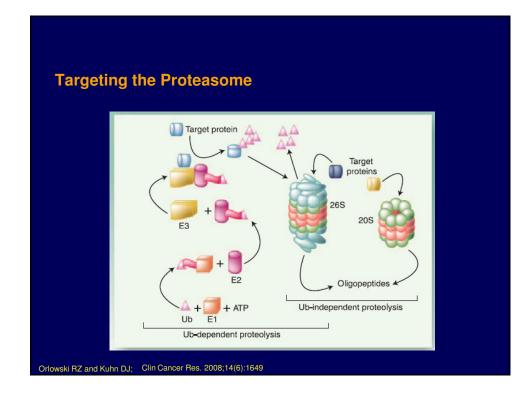
Ailawadhi S, et al. Cancer. 2010;116:84-92.

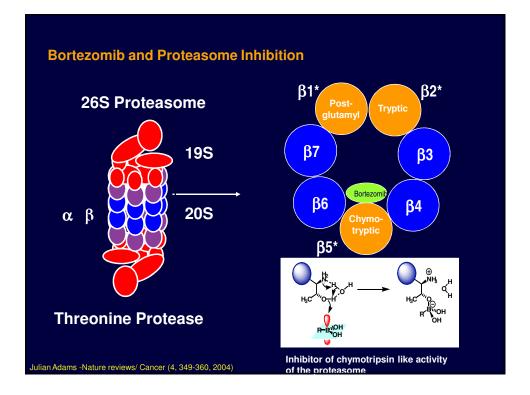
Bone marrow-MRI stage D with extensive (> 50%) marrow infiltration

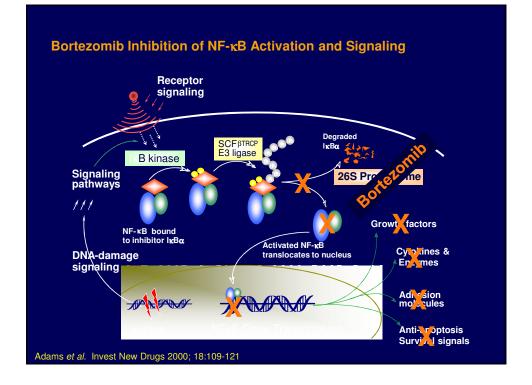


3. Not all Myeloma are the same ! (Prognostic factors)

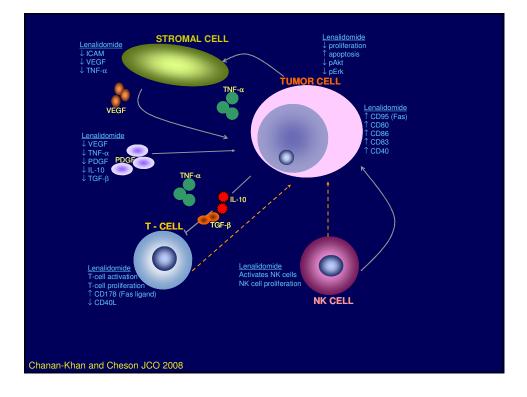
Major Adverse Prognostic Factors


- Karyotypic deletion 13 or hypodiploidy
- High plasma cell labeling index
- Molecular genetics: t(4;14), t(14;16), or 17p-
- High LDH, β_2 -M, or CRP
- Increased circulating plasma cells
- Plasmablastic morphology
- Low albumin





Step 1 Induction treatment "Tools" to Treat Myeloma		
 Steroids Melphalan (Transplant) Cyclophosphamide Bortezomib Thalidomide Lenalidomide Pegylated doxorubicin Zoledronic acid Pamidronate 	Combination Regimens Vdex Vdox RD TD MP VCD VRD VdoxT VTD VMP MPT MPR	
CLINIC		

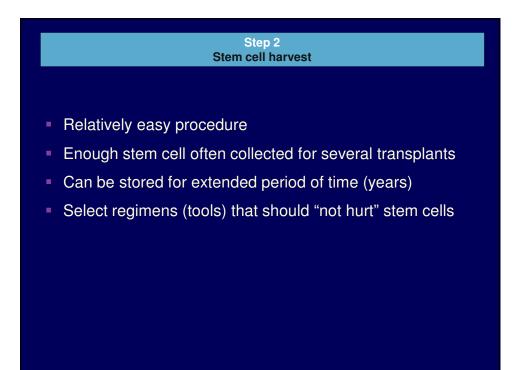


Proteasome Inhibitor–Based Therapies in Transplantation-Eligible Patients With MM

Regimen	Phase	N	ORR, %	CR, %
Bortezomib monotherapy ^[1]	II	64	63	3
Bort/Dex ^[2-4]	 	48 441	90 82	8 6
Bort/PLD ^[5]	II	29	79	28 (CR + nCR)
VDD ^[6]	II	40	92.5	40 (CR + nCR)
VDT ^[7]	II	40	78	23
RVD ^[8,9]	1/11	66	100	29
VTD ^[10]		460	94	32 (CR + nCR)

1. Richardson P, et al. J Clin Oncol. 2009;27:3518-3525. 2. Jagannath S, et al. Br J Haematology. 2009;146:619-626. 3. Harousseau JL, et al. ASH 2009. Abstract 353. 4. Harousseau JL, et al. ASH 2008. Abstract. 5. Orlowski RZ, et al. Blood 2006;108:239a. 6. Jakubowiak A, et al. J Clin Oncol 2009;27:5015-5022. 7. Sher T, et al. ASH 2009. Abstract 618. 8. Anderson KC, et al. ASCO 2010. Abstract 8016. 9. Richardson PG, et al. Blood 2010;116:679-686. 10. Cavo M, et al. ASH 2008. Abstract 158. Know your tools IMiD-Directed Therapies in Transplantation-Eligible Patients

IMiD-Directed Therapies in Transplantation-Eligible Patients With MM


Regimen	Phase	N	ORR, %	CR, %
Thal/dex ^[1] (Rajkumar)	Ш	204	63	4
Len/dex ^[2,3] (E4A03)	III	445	81	13
Len/dex ^[4] (S0232)	III	198	75	15
BiRD ^[5]	II	65	90	39

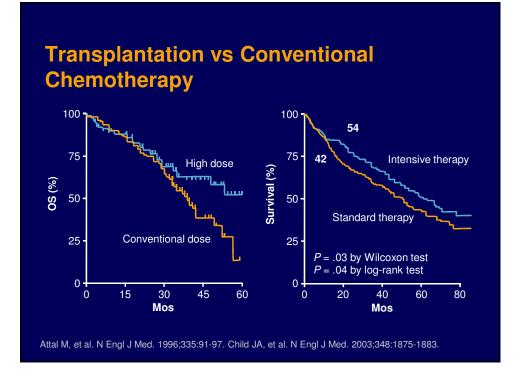
1. Rajkumar SV, et al. J Clin Oncol. 2006;24:431-436. 2. Rajkumar SV, et al. ASCO 2008. Abstract 8504. 3. Rajkumar SV, et al. Lancet Oncol. 2010;11:29-37. 4. Zonder JA, et al. ASCO 2008. Abstract 8521. 5. Niesvizky R, et al. Blood. 2008;111:1101-1109.

Controversial Decisions

- Choice of treatment
 - Optimal therapy for high-risk patients
- Goal of therapy (CR or not)
- Combined versus sequential therapy
- Duration of therapy
- Stem cell transplant
 - Timing
 - Single vs tandem autologous SCT
 - Role of allogeneic SCT
- Role of maintenance therapy

<section-header><section-header><section-header><section-header><section-header><section-header>

Autologous Stem Cell Transplantation


- Mel 200/m² standard conditioning regimen
- Sufficient performance score and adequate liver, pulmonary, cardiac function needed
- Higher PR and CR rates than conventional chemotherapy
- Higher OS and EFS than conventional Rx
- Advanced age and impaired renal function are, by themselves, not contraindications

Attal M, et al. N Engl J Med. 1996;335:91-97. NCCN. Practice guidelines: myeloma. V.3.2010. Available at: http://www.nccn.org.

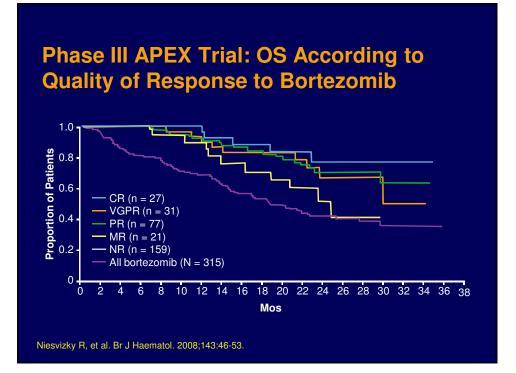
Stem Cell Transplantation

Key issues

- Efficacy compared with conventional chemotherapy
- Timing: early vs delayed
- Single vs tandem
- Role of allogeneic and miniallogeneic transplantations

The Importance of CR in Treatment of Multiple Myeloma

Meta-Analysis: Max Response to HDT and OS in Patients With Newly Diagnosed MM

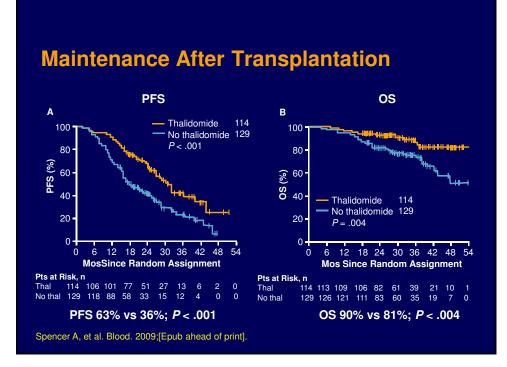

Comparison	<i>P</i> Value
CR/VGPR vs PR vs other	< .00001
CR vs PR vs MR	.00002
CR vs PR	.2496
CR vs PR/NR	< .05
Maximal response	< .001
CR/VGPR vs PR	< .0001
CR vs PR/NR	0.38
≥VGPR vs other	.002
CR/MRD vs other	.22
Maximal response	< .00001
	CR/VGPR vs PR vs other CR vs PR vs MR CR vs PR CR vs PR/NR Maximal response CR/VGPR vs PR CR vs PR/NR ≥VGPR vs other CR/MRD vs other

Van de Velde HJK, et al. Haematologica. 2007;92:1399-1406.

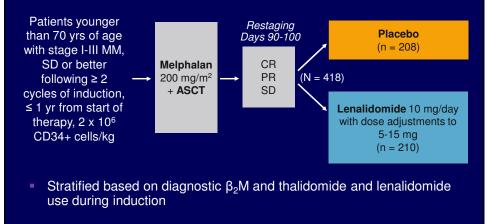
- Achieving and maintaining CR are important goals for firstline MM treatment
- Novel agents currently under evaluation in phase II and phase III studies as induction therapy before HDT-ASCT
 - Potential PFS and OS advantages with higher rates of CR
 - Durability of CR may improve long-term outcomes
 - Prolonged follow-up needed to confirm long-term impact of improved responses

Chanan-Khan AA, et al. J Clin Oncol. 2010;28:2612-2624.

Again Know your Tools !!


- Is this is a new concept?
- What should be the goal of maintenance?
 - Improving response with prolong treatment?
 - Improving duration of response achieved with step 1 or 3?
 - Quality of life ?
 - Is cost ever an issue to patients?
- Ideal agent for "prolong treatment"
 - 1. Low toxicity
 - 2. Low cost
 - 3. Least monitoring
 - 4. Prolong efficacy
 - 5. Improve survival

Post-ASCT Maintenance

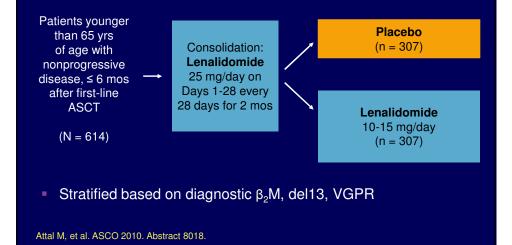

	Ν	Thal Dose	CR Rate, %	PFS , %	OS, %
Barlogie	668	400 mg until prog or AE	62 vs 43	5 yr: 56 vs 44	5 yr: 65 in both groups
Attal	597	400 mg until prog or AE	67 vs 55 (CR + VPGR)	3 yr: 52 vs 36	4 yr: 87 vs 77
Spencer	243	200 mg 12 mos	1-yr maint 63 vs 40	3 yr: 63 vs 36	3 yr: 90 vs 81

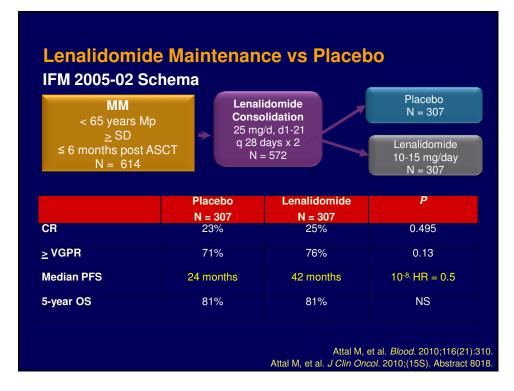
Maintenance therapy with immunomodulators improves PFS and OS

Barlogie B, et al. N Engl J Med. 2006;354:1021-1030. Attal M, et al. Blood. 2006;108:3289-3294. Spencer A, et al. Blood. 2009;[Epub ahead of print].

CALGB 100104: Lenalidomide vs Placebo Maintenance Following ASCT for MM

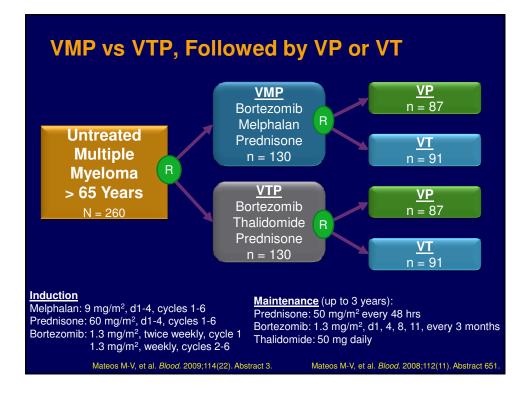
McCarthy PL, et al. ASCO 2010. Abstract 8017.

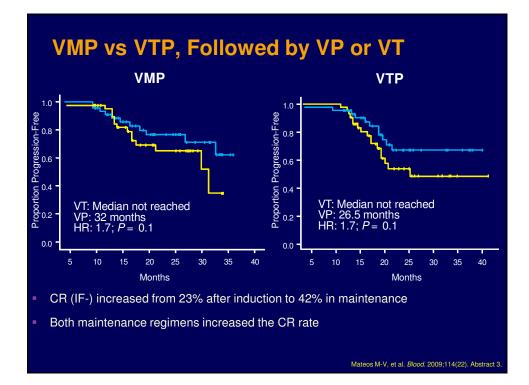

CALGB 100104: Efficacy Analysis


- Lenalidomide maintenance therapy following ASCT associated with 58% reduction in progression or death vs placebo
 - Estimated HR: 0.42
- Median OS not reached for either arm

Outcome	Lenalidomide (n =210)	Placebo (n = 208)	<i>P</i> Value
Progression or death, n (%)	29 (14)	58 (28)	< .0001
 Deaths 	11 (5)	17 (8)	< .2
Median TTP, mos	Not reached	25.5	
Median TTF, mos	Notreacheu	25.5	

McCarthy PL, et al. ASCO 2010. Abstract 8017.



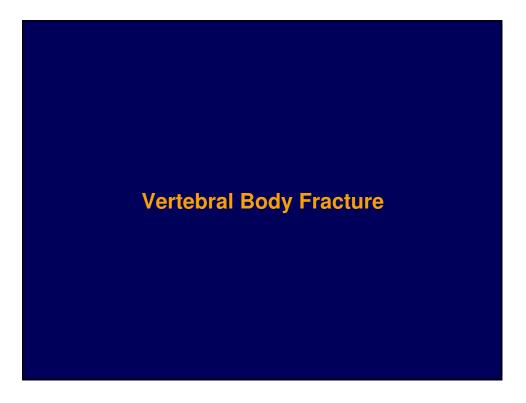


Maintenance Therapy: Summary

- Maintenance post transplantation with immunomodulatory agent can prolong PFS and perhaps OS
- Awaiting reports on bortezomib maintenance
- Toxicity associated with prolong treatment remains a concern

Supportive Therapies in Myeloma

- Bone disease
 - Radiotherapy for palliation of bone pain
 - Vertebroplasty or kyphoplasty for persistent pain
 - Bisphosphonates
- Anemia: transfusions and/or RBC growth factors
 - Consider EPO in patients with symptomatic anemia
- Hypercalcemia: rehydration, bisphosphonates
- Renal dysfunction or hyperviscosity
 - Rehydration, treat infection, plasmapheresis
- Infections: antibiotics, influenza vaccination
 Smith A, et al. Br J Haematol. 2005;132:410-451.


Impact of Bone Disease

- Pain
- Hypercalcemia
- Compromised QOL
- Pathological Fracture
 - Pain
 - Increased morbidity
 - Delay in anti-MM therapy
 - Increased health care cost
- Survival

Most Common Sites for Pathological Fracture in Myeloma

- Skeletal related events in MM
 - Pathological Fracture (37%)
 - Radiation to bone lesion (34%)
 - Surgical intervention (4%)
 - Spinal cord compression (2%)
- Most common sites of pathologic fractures in Myeloma
 - Vertebrae 69%
 - Ribs 14%
 - Femur 5%
- 1. Berenson JR et al. *N Engl J Med.* 1996;334(8):488-493. 2. Berenson JR et al. *J Clin Oncol.* 1998;16(2):593-602.

Kyphoplasty for Vertebral Compression Fracture

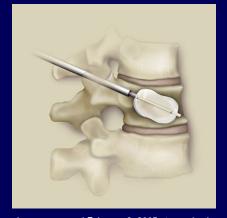


Image accessed February 3, 2005 at www.kyphon.com.

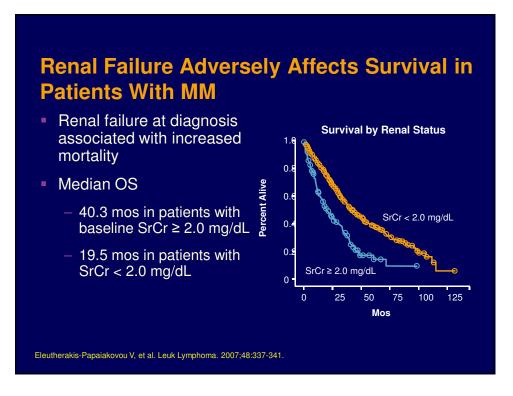
Advantages:

- Relieves pain^{1,2}
- Restores 34% to 53% of vertebral height¹⁻³
- Cement leakage occurs in ~4%²

Bisphosphonates

Reduced incidence of SREs and need for RT^[1]

1. Fourney DR et al. *J Neurosurg Spine*. 2003;98:21-30. 2. Dudeney S et al. *J Clin Oncol*. 2002;20: 2382-2387. 3. Lane JM et al. *Clin Orthop*. 2004;426:49-53.

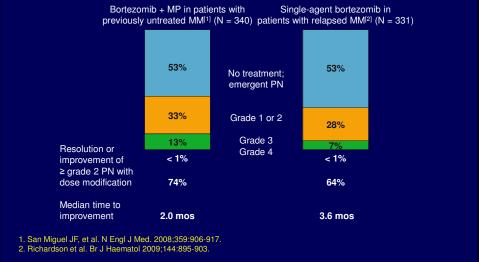

- Zoledronic acid 4 mg 15-min infusion at least as effective as pamidronate 90 mg 2-hr infusion in reducing risk of skeletal-related events in patients with multiple myeloma^[2]
- Long-term treatment associated with osteonecrosis of the jaw^[3]
 - Risk higher with zoledronic acid
- Dose- and infusion rate—related renal toxicity^[4]
 - Modified dosing regimens under investigation^[5]

Berenson JR, et al. Cancer. 2001;91:1191-1200; 2. Rosen LS, et al. Cancer J. 2001;7:377-387.
 Dimopoulos MA, et al. Haematologica. 2005;91:968-971. 4. Berenson JR. Oncologist. 2005;10:52-62.
 Berenson JR, et al. ASH 2005. Abstract 5152.

Renal Impairment in MM

- Renal dysfunction at time of diagnosis common in patients with symptomatic MM
 - − Abnormal renal function (SrCr \geq 1.5 mg/dL) in 31%
 - Renal failure (SrCr ≥2.0 mg/dL) in 21% of patients at diagnosis
- Multiple factors contributing to renal dysfunction in MM
 - Cast nephropathy Hyperviscosity
 - Hypercalcemia
- Medications such as NSAIDs
- Hyperuricemia
- Coexistent amyloidosis or light chain deposition disease

- Dehydration Eleutherakis-Papaiakovou V, et al. Leuk Lymphoma. 2007;48:337-341


Bortezomib Use in MM Patients With Advanced Renal Failure

 Retrospective analysis of bortezomib-based therapy in 24 patients with MM requiring dialysis for advanced renal failure

	n (%)
ORR	15 (75)
CR/nCR	6 (30)
PR	9 (45)
Most Common AEs	
Peripheral neuropathy	2 (11)
Infections	2 (11)
Thrombocytopenia	7 (39)
Discontinuations due to adverse events	
Progressive disease	6 (33)
Neuropathic pain	1 (6)
Peripheral neuropathy	1 (6)
Chanan-Khan AA, et al. Blood. 2007;109:2604-2606.	

Toxicities Related to Treatment of Myeloma

2. Herpes Zoster or Shingles with Bortezomib

Rationale for HZV Prophylaxis With Bortezomib Treatment Rationale supported by 2 analyses

- Phase III APEX trial of bortezomib vs dexamethasone^[1]
 - Routine prophylaxis: 25% vs 46%
 - HZV infections: 13% vs 5% (P = .002)
 - Total infections: 24% vs 21% (P = .443)
- Retrospective analysis of 125 patients with MM treated with bortezomib (median: 16 wks) and HZV prophylaxis^[2]
 - Acyclovir 400 mg QD in > 80% of patients; alternatives: acyclovir 200 mg, valacyclovir 250/500 mg, or famciclovir 500 mg QD
 - Self-reported adherence: 100%
 - No episodes of HZV infection

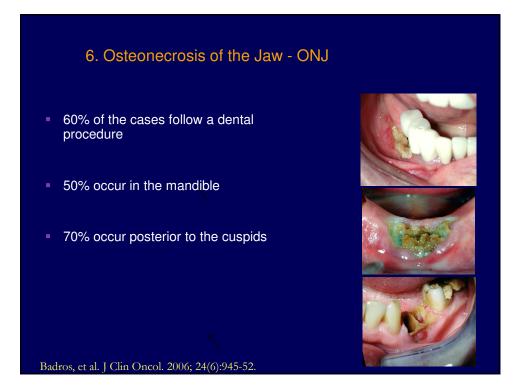
1. Chanan-Khan AA, et al. J Clin Oncol. 2008;26:4784-4790. 2. Vickrey E, et al. Cancer. 2009; 115:229-232.

3. Marrow suppression

Risk of Grade 3/4 Myelosuppression With Novel Agents for Myeloma

Drug	Patient Population	N	Neutropenia, %	Thrombocytopenia, %
Thalidomide*	Newly diagnosed	102	13	4
Lenalidomide*	≥ 1 previous therapy	346	21	10
Bortezomib	1-3 previous therapies	331	15	29

Miceli T, et al. Clin J Oncol Nurs. 2008;12(suppl 3):13-20.


4. Low Platelet counts

Management of Thrombocytopenia in Patients on Lenalidomide or Bortezomib

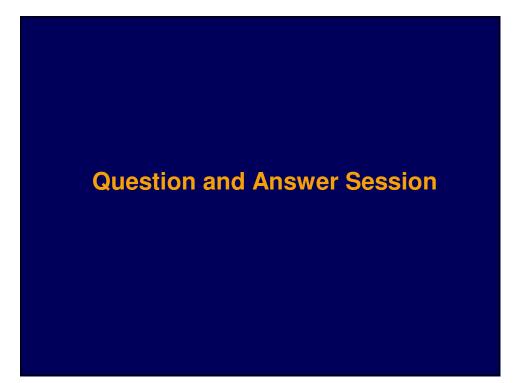
Adverse Effect	Recommendation
Lenalidomide	
 When platelets fall to < 30,000 cells/mm³ 	Interrupt lenalidomide treatment and follow CBC wkly
− Return to \ge 30,000 cells/mm ³	Restart lenalidomide at 15 mg/day
 For each subsequent drop < 30,000 cells/mm³ 	Interrupt lenalidomide treatment
 Return to ≥ 30,000 cells/mm³ 	Resume lenalidomide at 5 mg less than the previous dose*
Bortezomib	
 When platelets fall to onset on grade 4 toxicity (< 25,000 cells/mm³) 	Hold therapy; transfusion is recommended at the discretion of the physician, particularly with any signs of bleeding
 Once toxicity has resolved 	Treatment may be restarted at a 25% reduced dose
Miceli T, et al. Clin J Oncol Nurs. 2008;12(suppl	3):13-20. *Do not dose below 5 mg/day.

5. Deep Vein Thrombosis (DVT) "Blood clots"

- Common side effect with thalidomide or lenalidomide treatment (approx 10-15%).
- Can be prevented.
- All patients with IMiDs based therapy should be on a either one of the prophylaxis - based on regimen used and preexisting risk factors.
 - Aspirin
 - Heparin
 - Warfarin

Risk Factors of ONJ

Confirmed in large series:


- Dental extraction
- Pamidronate --- Zoledronic acid use
- Older age
- Longer time from diagnosis
- Cases reports suggested higher risks with... Thalidomide, bevacizumab, sunitinib

J Clin Oncol. 2008; 26: 4037-4038; Ann of Oncol. 2008; 19:2091-2092; Bone. 2009;44:173-5.

Management of	ONJ
Medical	STOP BP
	Mouth wash & analgesics
Surgery	Antibiotics & antifungals Debridment
	Resection (+/- Flap primary closure
	? Infections
Tried	? None healing Ozone
	Hyperbaric O2
	PTH
	Laser
	Platelet rich plasma

Conclusion

- Amazing progress in myeloma therapy.
- A lot remains to be done.
- Clinical trials remains the only path to conclusive victory.
- Controversies are good keep faith and choose a treatment approach that suits you.
- Learn about overall strategic approach to your disease.
- Myeloma is still rare so seek advise from a myeloma expert.
- LLS can provide with Myeloma resources in your neighborhood.

